
Recall: 
1. Real world problems can be formulated into mathematical equations (usually 
involves derivatives); 
2. Our main focus in Math 3310: 
a. How to solve equations analytically and numerically; 
b. Analyse the numerical algorithm (convergence to solution?) 
c. Analyse the numerical approximation (accuracy? )

Lecture 2:



Analytic methods for solving differential equation

 Note: Most differential equations do not have analytic (exact) solutions!
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Three most basic techniques :

(1) Integrating factor

(2) Separation  of variables

(3) Analytic spectral C Fourier ) method



(1) Integrating factor 

(A) First  order differential equation ( involving first derivatives

ONLY )
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Example 1:

Remark : Mix ) is called the integrating factor
.
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Example 2:
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(B) Second order differential equation ( involving second derivatives )
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Example:

Using the integrating factor technique for 1st order differential egt .
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Example: ( Non - homogeneous case )
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Another useful technique : Separation  of variables

Consider a heat equation ( on a unit circle ) :
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