Lecture 2:

Recall:

1. Real world problems can be formulated into mathematical equations (usually involves derivatives);

- 2. Our main focus in Math 3310:
- a. How to solve equations analytically and numerically;
- b. Analyse the numerical algorithm (convergence to solution?)
- c. Analyse the numerical approximation (accuracy?)

Analytic methods for solving differential equation

Note: Most differential equations do not have analytic (exact) solutions!

e.g.
$$-\frac{d}{dx} \begin{pmatrix} x \\ c(x) \\ u(x) \end{pmatrix} = \int_{c(x)}^{sx^2} DOESNT haveanalytic sol! $\int_{complicated}^{complicated} \int_{complicated}^{complicated} \int_{convert}^{complicated}^{complicated} \int_{convert}^{complicated}^{complicated}^{complicated} \int_{convert}^{complicated}^{complicated}^{complicated}^{complicated}$$$

ont

-

a

in Date

Three most basic techniques:

- (1) Integrating factor
- (2) Separation of variables
- (3) Analytic spectral (Fourier) method

(1) Integrating factor
(A) First order differential equation (involving first derivatives
Consider: (*)
$$\frac{dy}{dx}$$
 + P(x) $y(x) = Q(x)$ (y is unknown function)
(et M(x) = $e^{\int_{x}^{x} P(s) ds}$ Then, it is easy to check:
 $\frac{d}{dx} (M(x) y(x)) = \frac{dM(x)}{dx} y(x) + M(x) \frac{dy}{dx}$
 $= e^{\int_{x}^{x} P(s) ds} P(x) y(x) + M(x) \frac{dy}{dx}$
 $= e^{\int_{x}^{x} P(s) ds} P(x) y(x) + M(x) \frac{dy}{dx}$
 $= e^{\int_{x}^{x} P(s) ds} P(x) y(x) + M(x) \frac{dy}{dx}$

Multiply both sides of
$$(4x)$$
 by $M(x) =$
 $M(x) \left(\frac{dy}{dx} + P(x)y(x)\right) = M(x) Q(x)$
 $\frac{d}{dx} (M(x)y(x)) = \int M(x) Q(x)$
 $\therefore \int \frac{d}{dx} (M(x)y(x)) = \int M(x) Q(x)$
 $\Rightarrow M(x)y(x) = \int M(x) Q(x) dx + C$
 $y(x) = \left(\int (e^{\int x} P(x) dx) Q(x) dx + C\right) \left(e^{\int x} P(x) dx\right)$

Remark: M(x) is called the integrating factor. Example 1: Consider = $\frac{dy}{dx} - g(x)y(x) = 0$, $1 \le x \le 0$ with y(1) = 1. Suppose g(x) = k the the Find an approximated guess of y(x). 9(x) Solution: Consider: dy - ky(x) = 0 Let $M(x) = e^{\int -\frac{k}{x} dx} = e^{-k \ln x} = x^{-k}$ $M(x)\left(\frac{dy}{dx} - \frac{k}{x}y(x)\right) = 0 \cdot M(x)$ Then: $\exists dx (M(x)y(x)) = 0$ =) $\chi \approx M(x) y(x) = C =) y(x) = C \chi^{k}$

$$f(x) = 1 \implies 1 = C, \quad i: \quad g(x) = x^{k} \text{ is an approximated} \\ guess of the solution. \\ f(x) \frac{dy}{dx} + g(x) \quad g(x) = h(x), \quad z \le x < \sigma \text{ with } g(z) = 1 \\ \text{Suppose } f(x) \approx (x^{2} - 1) \text{ ; } g(x) \approx 2x \text{ ; } h(x) \approx x. \\ \text{Find an approximated guess of } g(x). \\ \hline Solution: \quad (consider : \frac{dy}{dx} + \frac{2x}{x^{2} - 1} \quad g(x) = \frac{x}{x^{2} - 1} \\ \text{Let } M(x) = e^{\int \frac{2x}{x^{1} - 1} dx} \qquad \ln(x^{2} - 1) \\ = e^{\int x^{2} - 1} \\ \hline M(x) \left(\frac{dy}{dx} + \frac{2x}{x^{2} - 1} \quad g(x)\right) = M(x) \left(\frac{x}{x^{2} - 1}\right) \\ \Rightarrow \quad \frac{dx}{dx} \left(M(x) \quad g(x)\right) = M(x) \frac{x}{x^{2} - 1} \\ \end{cases}$$

$$i \cdot \int \frac{d}{dx} ((x^{2} - 1) y(x)) = \int (x^{2} - 1) \left(\frac{x}{x^{2} - 1}\right)$$

$$\Rightarrow (x^{2} - 1) y(x) = \frac{x^{2}}{2} + C$$

$$\Rightarrow y(x) = \left(\frac{1}{2}x^{2} + C\right) / (x^{2} - 1)$$

$$y(z) = 1 \Rightarrow 1 = \frac{(C + 2)}{3} \Rightarrow C = 1.$$

$$i \cdot y(x) = \left(\frac{1}{2}x^{2} + 1\right) / (x^{2} - 1) \text{ is an approximated guess}$$
of the solution.

-

(B) Second order differential equation (involving second derivatives)
Consider:
$$-C \frac{d^2u}{dx^2} + gu(x) = 0$$
 where $c > 0$, $g > 0$ are positive
Let $M(x) = \frac{du}{dx}$ (integrating factor)
Then: $C \frac{d^2u}{dx^2} M(x) = gu(x) M(x)$
 $\frac{du}{dx} \qquad \frac{du}{dx}$
 $(=) \frac{d}{dx} \left(C \left(\frac{du}{dx} \right)^2 \right) = \frac{d}{dx} \left(g \left(u(x) \right)^2 \right)$
A possible solution of the above is:
 $C \left(\frac{du}{dx} \right)^2 = g \left(u(x) \right)^2$
 $\therefore \frac{c(u)}{dx} = \pm \int_{-\infty}^{\infty} u(x)$

Using the integrating factor technique for 1st order differential eqt: $u(x) = Ke^{\pm \int_{c}^{\frac{1}{2}x}} for some constant K.$ For general solution, $u(x) = \alpha_1 e^{\int_{c}^{\frac{1}{2}x}} + \alpha_2 e^{-\int_{c}^{\frac{1}{2}x}}$ where α_1 and α_2 are some constants determined by boundary conditions.

Example: Assume u(0) = 0 and u(1) = 2. We get $d_1 + d_2 = 0$ $d_1 e^{\int_{\frac{\pi}{2}}^{\frac{\pi}{2}}} + d_2 e^{-\int_{\frac{\pi}{2}}^{\frac{\pi}{2}}} = 2$ $\Rightarrow d_1 = -d_2 = \frac{2}{e^{\int_{\frac{\pi}{2}}^{\frac{\pi}{2}}} - e^{-\int_{\frac{\pi}{2}}^{\frac{\pi}{2}}}}$

Example: (Non-homogeneous case)
Consider:
$$\int_{-C} -C \frac{d^2u}{dx^2} + gu = gx^2 + 1$$

(*) $\int_{-\frac{du}{dx}} (o) = 1$, $u(1) = 1$
Note that if $w(x)$ satisfies (*), then:
 $u(x) = \alpha_1 e^{\int_{-\infty}^{\infty} x} + \alpha_2 e^{-\int_{-\infty}^{\infty} x} + w(x)$ for some constants
Homogeneous
 α_1 and α_2 is a general sol.
In our case, $w(z) = x^2 + (\frac{2C+1}{g})$ is a solution.
 $\therefore u(x) = \alpha_1 e^{\int_{-\infty}^{\infty} x} + \alpha_2 e^{-\int_{-\infty}^{\infty} x} + x^2 + (\frac{2C+1}{g})$
determined by boundary conditions.

That are

Another useful technique : Separation of variables Consider a heat equation (on a unit circle): $\mathcal{U}_{t} = \mathcal{U}_{xx}, \quad x \in [0, 2\pi], \quad t \ge 0$ Subject to: $\mathcal{U}_{x}(0, t) = \mathcal{U}_{x}(2\pi, t) \quad (periodic \quad condition)$ $\mathcal{U}_{x}(x, 0) = Sin x \quad (initial \quad condition)$ Strategy: Let u(x,t) = X(x) T(t). $u_t = u_{xx} \Rightarrow X(x) T'(t) = X''(x) T(t)$ $\frac{X''}{X} = \frac{T}{T} = \lambda \in \text{Some constant}$ Then: we get two ordinary differential equations: $X''(x) = \lambda X(x)$ and $T'(t) = \lambda T(t)$ (Partial differential eqt) 2 Ordinary differential eqt